Новости м теория вселенной для чайников

Согласно наиболее популярной теории эволюции Вселенной, смерть последней будет холодной. |. 2.0 Теория ДВС: Шары для расточки каналов ГБЦ. Чтобы понять основную идею М-теории, нужно вернуться к 1970-м годам, когда ученые поняли, что вместо описания Вселенной, основанной на точечных частицах, вы можете описать ее в терминах крошечных колеблющихся струн (трубок энергии). исследование, россия, подкасты риа новости, вселенная, наука, квантовая теория, аудио, физика.

Законы Вселенной

  • Создание М-теории
  • Курсы валюты:
  • Насущные проблемы теории струн
  • Теория причинных множеств.
  • 10 самых загадочных и необъяснимых тайн Вселенной
  • «Белые дыры»

Теории происхождения Вселенной и ее модели

Теория струн для чайников Виттен и стажёр Хофава обнаружили, что для теории E-гетеротической струны существует описание в терминах 11-мерной теории.
60 удивительных фактов о Вселенной, которые вы должны знать Речь о том, что, согласно общей теории относительности, вселенная включает в себя 4 измерения: длину, ширину, глубину и время.
Введение в M-теорию 2.0 Теория ДВС: Шары для расточки каналов ГБЦ.

Новая модель Вселенной

Как следствие, соотношение между давлением, оказываемым нечастицами, и плотностью их энергии, зависит от температуры. Очень слабое взаимодействие нечастиц с «обычной» материей, предсказываемое всеми теоретическими моделями вещества, делает их отличным кандидатом на роль темной энергии. Значения постоянной Хаббла и параметра S8, полученные с использованием нечастиц, согласуются друг с другом, в отличие от значений, рассчитанных с использованием стандартной космологической модели. На данный момент нет эмпирических доказательств, подтверждающих эту теорию. Однако авторы уверены, что в ближайшее десятилетие точность астрономических измерений повысится настолько, что можно будет определить, верно ли их предположение. Пока ученые хотят проверить теорию с помощью ускорителя частиц. Другая теория предполагает, что мир темной материи — зеркало нашей Вселенной, но с другими правилами.

Поскольку это поле флуктуирует, массы порождаемых им частиц ведут себя также. Космологическая постоянная по-прежнему меняется со временем, но в этой модели это этот процесс связан с изменением массы частиц с течением времени, а не с расширением Вселенной. Флуктуации поля приводят к большим красным смещениям далеких скоплений галактик, чем предсказывают традиционные космологические модели. Таким образом, космологическая постоянная остается верной предсказаниям модели. Рецепт темной Вселенной Новая структура Ломбризера также решает некоторые другие насущные проблемы космологии, включая природу темной материи.

Этот невидимый материал превосходит по численности обычные частицы материи в соотношении 5 к 1, но остается непонятным, поскольку не взаимодействует со светом. Физик предположил, что флуктуации поля также могут вести себя как аксионное поле. При этом аксионы являются гипотетическими частицами, которые считаются одним из предполагаемых кандидатов на роль темной материи. Эти флуктуации могут также «покончить» с темной энергией, гипотетической силой, растягивающей ткань пространства и, таким образом, раздвигающей галактики все быстрее и быстрее. В новой модели эффект темной энергии будет объясняться массами частиц, которые в более поздние времена во Вселенной избрали другой эволюционный путь.

Читать далее:.

Это происходит 7-8 раз в секунду. И мы с вами, будучи теми самыми наблюдателями окружающей реальности, постоянно проделываем этот «фокус» с появлением и исчезновением материи. Почему желания исполняются То есть получается, что наш разум первичен, он преобладает над материей. Это и есть квантовая реальность! А раз разум непосредственно влияет на объективную реальность, то все рассуждения эзотериков, парапсихологов и авторов тех самых кассовых фильмом верны — мы можем управлять своей реальностью! И имеем для этого научное обоснование. То есть, если мы представляем какое-либо желаемое будущее событие, эта реальность уже существует как потенциальная возможность. Она находится в бесконечном квантовом поле, где нет понятий пространства и времени.

А все, что нужно для ее появления — это внимание наблюдателя. Вот из такого пространства вариантов мы и выбираем свою собственную реальность и те события, из которых состоит наша жизнь. Человеку свойственно зацикливаться на своих проблемах, фокусируя на них внимание, от чего они только усиливаются. При этом, как утверждает квантовая физика, все возможности существуют в один момент, необходимо лишь выбрать нужную. То есть — сместить фокус внимания. Человек как квантовый наблюдатель может кардинально изменить «материю» своей жизни. Помните — «где внимание, там и энергия»!

Могут отображать альтернативные исходы событий.

В них другие физические постоянные и элементарные частицы, но такие же законы природы. Исследователи предложили рассматривать некоторые элементарные частицы например, пионы, которые по массе меньше атома как тонкие протяженные нити — так называемые квантовые струны. В 1984—1986 годах произошла суперструнная революция : физики поняли, что теорией струн гипотетически можно описать взаимодействие всех элементарных частиц, а не только пионов. Возникла идея, что квантовые нити колеблются с разными частотами и задают свойства материи, как привычные нам атомы. Согласно общепринятой теории относительности Вселенная включает в себя четыре измерения, среди которых длина, ширина, глубина и время. По теории струн измерений может быть 6, 10 и даже 26. Но мы осознаем только четыре из них. Остальные измерения сворачиваются, но в них могут помещаться параллельные вселенные.

Эта концепция в упрощенной визуальной форме отражена в фильме Кристофера Нолана «Интерстеллар» 2014. Михаил Иванов, кандидат физико-математических наук, доцент кафедры теоретической физики МФТИ: «Тема параллельных миров-вселенных в художественной и научной литературе переплетена с темой множественности миров-областей в пределах одной вселенной. Если рассматривать область якобы нашей вселенной, но отстающую от нас более чем на 14 млрд световых лет это больше расстояния, которое свет может пройти с момента Большого взрыва к настоящему времени , тут уже возможно говорить о параллельных мирах. Исторически одним из первых источников идеи мультивселенных была многомерная геометрия. Если в пространстве больше трех измерений, в нем можно представить несколько параллельных или пересекающихся гиперплоскостей, на каждой из которых действует обычная трехмерная физика. Восходят эти идеи минимум к XIX веку. В современной науке основные источники идеи о мультивселенных — общая теория относительности и квантовая теория. Общая теория относительности ОТО описывает, как геометрия пространства-времени, которая проявляется в виде гравитационных полей, изменяется со временем и взаимодействует с материей.

В ней можно сконструировать решения основных уравнений так, чтобы черная дыра оказалась воротами в параллельный мир. Но это требует существования экзотических видов материи, которые едва ли возможны. Можно применить обобщения ОТО к многомерному пространству и прийти к допущению, что в нем живут трехмерные браны от слова мембрана , на поверхности которых размещаются параллельные вселенные. Можно модифицировать теорию так, чтобы пространство эволюционировало, порождая практически не связанные друг с другом области, в которых законы физики будут различаться. В квантовой теории есть концептуальные проблемы, связанные с тем, что она состоит из двух разных частей. Первая — физика того, что происходит в замкнутой системе, обособленной от внешних взаимодействий. Вторая — теория измерений, описывающая взаимодействия системы с измерительным прибором.

ДОСЬЕ «КП»

  • Теория мультивселенной на доступном языке
  • Белые дыры, мультивселенная и вечная симуляция. Безумные теории, объясняющие устройство Вселенной
  • Введение в M-теорию
  • Теории происхождения Вселенной и ее модели

Теория мультивселенной на доступном языке

Такое менее обширное понятие дает возможность для существования нашей теории о множественной вселенной. «М-теория является единственным «кандидатом» на законченную теорию Вселенной. РИА Новости, 19.07.2023.

Законы энергии Вселенной: как работает энергия в нашем мире — 11 главных законов

Так что ей попытались найти место в теории формирования Вселенной — и, конечно, нашли. Согласно наиболее популярной теории эволюции Вселенной, смерть последней будет холодной. |. Судьба Вселенной сильно зависит от фактора неизвестного значения — Ω, меры плотности материи и энергии во всем космосе. В рамках общей теории относительности и удовлетворяющей ее уравнениям космологической модели, называемой Вселенной Фридмана, для такого ускорения требуется экзотический источник, называемый сейчас темной энергией.

Другая Вселенная: Астрофизики взбудоражены неожиданным открытием

Загадочные «нечастицы» способны расколоть Вселенную - Hi-Tech Теория струн вселенной – способ представления пространства вселенной, состоящей из неких нитей, которые и называют струнами и бранами.
Загадочные «нечастицы» способны расколоть Вселенную Своё видение устройства мироздания и как выглядит модель Вселенной, рассказывает известный российский учёный Плыкин В.Д.
Введение в M-теорию Говоря нетехническим языком, M-теория дает представление об основной субстанции вселенной.
10 самых загадочных и необъяснимых тайн Вселенной | Компьютерра Эта система — факт биографии вселенной, но общая теория относительности вынуждена с этим фактом считаться — для этой системы уравнения общей теории относительности выглядят несравненно проще, и их решения интерпретируются однозначно.

Мир нереален? Как ученый доказал, что наша Вселенная – всего лишь симуляция

Наука Мир нереален? Как ученый доказал, что наша Вселенная — всего лишь симуляция Английский физик Мелвин Вопсон заявил, что его новое исследование может подтвердить популярную теорию симуляционной Вселенной. Согласно ей, все мы программный код, персонажи, живущие в некой виртуальной реальности. С подробностями — научный обозреватель Николай Гринько. Пожалуй, наиболее наглядно ее можно наблюдать в фильме "Матрица": главный герой обнаруживает, что вся его жизнь — лишь компьютерная программа, а сам он ведет вегетативное существование, погрузившись в виртуальную реальность. Правда, в картине с Киану Ривзом в главной роли все-таки присутствует реальный мир, тогда как сама теория вообще не предполагает существования хоть какой-нибудь реальности, доступной нашему пониманию. Двумя словами идею можно описать так: все мы существуем в программе, запущенной на каком-то невероятном компьютере.

Следствие: Для всей Вселенной информация первична. Энергия и материя — только ее проекции. Твоей истинной основой является сознание. Следствие: Без энергии никакое творение невозможно. Именно твоя энергия определяет возможность влияния на мир. Абсолютно каждое твое проявление — это генерируемый тобой импульс энергии. Тебе необходима энергия для жизни и созидания. Следствие: Сейчас тебе доступна лишь малая часть твоего безграничного энергетического потенциала. Эту малую часть, которая тебе доступна и которую ты можешь использовать, можно назвать твоим «освоенным» энергетический потенциалом.

Этот потенциал различен в разные моменты времени. Но твой истинный потенциал остается безграничным. Внутри тебя скрыт безграничный источник энергии. То есть близостью сознания к Абсолюту. Следствие: За счет роста сознания ты расширяешь свой освоенный энергетический потенциал. Чем выше уровень твоего сознания, чем ближе оно к сознанию Абсолюта — тем выше твой освоенный потенциал. Ты раскрываешь свой истинный потенциал самостоятельно. За счет роста сознания ты получаешь доступ к той энергии, которая изначально заложена в тебе. По мере роста сознания расширяется твой доступ к энергии.

Ты раскрываешь свой потенциал Творца. Следствие: Ты не можешь применять энергию в большем объеме, чем тот потенциал, который ты научился использовать. Попытка обладать и пользоваться более мощной энергией, чем позволяет освоенный потенциал, кончится ничем. Энергия в лучшем случае просто «утечет сквозь пальцы», а в худшем — причинит тебе вред. Освоенный энергетический потенциал — есть максимально возможная степень проявления себя и влияния на мир, твой максимальный энергетический уровень на данный момент. Лишь рост освоенного потенциала увеличивает твои фактические возможности. Сперва расширь свой потенциал — потом пользуйся более мощной энергией. Взаимодействие проявляет объект в мире. В силу этого энергетический потенциал может быть проявлен лишь в процессе взаимодействия.

Следствие: Твое истинное влияние на мир определяет использование имеющегося потенциала. Потенциал определяет твои возможности, но не проявляет тебя. Без использования он останется лишь потенциалом. Лишь при взаимодействии ты превращаешь потенциальную энергию в энергию проявленную. Если Солнце никто не видит — то неважно, насколько ярко оно сияет. Твой потенциал работает лишь при взаимодействии. Для увеличения схемы нажмите на нее. Следствие: Взаимодействие есть процесс обмена энергией и информацией.

Света и вообще электромагнитного излучения они не несут, но, возможно, имеют какую-то другую, недоступную пока нашему пониманию силу природы. Но поскольку тёмная материя составляет невидимый каркас, в том числе и нашей галактики Млечный Путь, поскольку мы сидим в этом огромном невидимом гнезде, то, может быть, даже её видимая часть этой тёмной материей кишит, а мы об этом понятия не имеем. А самое главное — раз гравитация у неё есть, то почему бы ей не притягивать к себе видимое вещество? И если она её притягивает, то в этом процессе мы её и поймаем с поличным. Если, скажем, невидимая звезда из тёмной материи оказалась в обыкновенном межзвёздном облаке, то его вещество будет собираться вокруг невидимого источника притяжения — и в конце концов невидимая звезда станет видимой. По расчётам астрофизиков, получившийся "гибрид" будет выглядеть в общем как очень тусклый и слабый красный карлик, но идущий от него свет будет заметно отличаться. И этот "неправильный" спектр излучения как раз и будет симптомом "тёмной звезды".

Вместо этого существование и свойства темной материи выводятся из ее гравитационного воздействия на видимую материю, излучение и структуру Вселенной. Считается, что это темное вещество пронизывает окраины галактик и может состоять из слабо взаимодействующих массивных частиц или вимпов. Во всем мире есть несколько детекторов, ищущих вимпы, но до сих пор ни один не был найден. Некоторые предполагают, что темная материя может образовывать длинные мелкозернистые потоки по всей Вселенной, и что такие потоки могут исходить от Земли. Что такое темная энергия? Несмотря на то, что гравитация притягивает пространство-время внутрь — «ткань» космоса, — она продолжает расширяться наружу все быстрее и быстрее. Чтобы объяснить это, астрофизики предложили невидимый агент, который противодействует гравитации, раздвигая пространство-время. Они называют это темной энергией. В наиболее широко принятой модели темной энергии это «космологическая постоянная»: неотъемлемое свойство самого пространства, которое имеет отрицательное давление, раздвигающее пространство. По мере расширения пространства создается еще больше пространства, а вместе с ним и больше темной энергии. Но никто не знает, как ее искать.

Просто невероятно: как устроена Вселенная, почему желания сбываются и зачем смотреть «Матрицу»

Он то приближается к нашим стержням-координатам, то удаляется. Мы не будем рассматривать, ничего полезного не содержащую, вероятностную модель атома. Чтобы точно определить положение электрона в пространстве желательно построить такую же систему координат в центре атома и по ним измерять положение электрона в атоме. Наблюдатель в атоме будет определять положение электрона по трем координатам, а для наблюдателя пункта 1 положение электрона будет определяться шестью измерениями. Конечно, он мог бы и при определении электрона обойтись тремя измерениями, но так сложнее, хотя принципиально возможно. И главное он должен знать структуру атома.

Для человека, придерживающегося диалектического материализма, нет сомнения, что и электрон из чего-то состоит. Он также делим, как и атом. Тем более это подтверждается практикой. Электрон излучает и поглощает в частности световые фотоны. Это мы, видим, смотря в монитор или на любой светящийся объект.

Этот фотон как-то входил в состав электрона или даже скажем в систему электрон-фотон. А так как фотон, это электромагнитная волна , то очень вероятно, что он как-то двигался в электроне. Или даже если не двигался сам по электрону, то на худой конец вращался вместе с электроном. Вращение электрона подтверждается наличием его спина. Электрон после излучения уменьшается в размере, следовательно, его субстрат электрические и магнитные вихри движется по радиусу.

Для определения положения вихрей тоже можно использовать трехмерные координаты. Эти измерения действительно очень малы относительно нас. Нам, чтобы определить положение вихря, следует провести девять измерений. Мы сделали три шага в сторону минимальных величин, а сейчас посмотрим в противоположную сторону. Как видится наш мир наблюдателю, находящемуся на Солнце или какой-нибудь планете — Марсе, Юпитере или другой планете?

Построив на Солнце систему координат из трех взаимно перпендикулярных осей, мы всегда можем определить мгновенное положение Земли. Наблюдатель в данном случае не видит никаких деталей на Земле, по крайней мере, без определенных приборов и методов. Мы ведь чтобы что-то увидеть на Марсе посылаем туда приборы. Так и наблюдатель из Солнца, должен приблизиться к Земле, чтобы разглядеть мелкую структуру. И так, определив по трем измерениям положение Земли, наблюдатель приблизился к Земле.

Что он видит? Почти то же что и мы на Марсе. Он увидит все детали ландшафта земли, а затем увидит и все живое, в том числе и людей. Он увидит, что один человек стоит, другой идет, несколько человек собрались в прямоугольник и движутся одновременно, там кучка людей смотрит в одну сторону, где один человек, что-то кричит, какой-то человек сидит и жует колбасу, еще несколько лежат, те на чем-то летят вверх, а те ныряют в воду и т. В общем, наблюдатель увидит какое-то сумбурное движение людей.

Космологическая постоянная определяется массой поля. Поскольку это поле флуктуирует, массы порождаемых им частиц ведут себя также. Космологическая постоянная по-прежнему меняется со временем, но в этой модели это этот процесс связан с изменением массы частиц с течением времени, а не с расширением Вселенной. Флуктуации поля приводят к большим красным смещениям далеких скоплений галактик, чем предсказывают традиционные космологические модели. Таким образом, космологическая постоянная остается верной предсказаниям модели. Рецепт темной Вселенной Новая структура Ломбризера также решает некоторые другие насущные проблемы космологии, включая природу темной материи. Этот невидимый материал превосходит по численности обычные частицы материи в соотношении 5 к 1, но остается непонятным, поскольку не взаимодействует со светом. Физик предположил, что флуктуации поля также могут вести себя как аксионное поле.

При этом аксионы являются гипотетическими частицами, которые считаются одним из предполагаемых кандидатов на роль темной материи. Эти флуктуации могут также «покончить» с темной энергией, гипотетической силой, растягивающей ткань пространства и, таким образом, раздвигающей галактики все быстрее и быстрее. В новой модели эффект темной энергии будет объясняться массами частиц, которые в более поздние времена во Вселенной избрали другой эволюционный путь. Читать далее:.

Это и есть квантовая реальность! А раз разум непосредственно влияет на объективную реальность, то все рассуждения эзотериков, парапсихологов и авторов тех самых кассовых фильмом верны — мы можем управлять своей реальностью!

И имеем для этого научное обоснование. То есть, если мы представляем какое-либо желаемое будущее событие, эта реальность уже существует как потенциальная возможность. Она находится в бесконечном квантовом поле, где нет понятий пространства и времени. А все, что нужно для ее появления — это внимание наблюдателя. Вот из такого пространства вариантов мы и выбираем свою собственную реальность и те события, из которых состоит наша жизнь. Человеку свойственно зацикливаться на своих проблемах, фокусируя на них внимание, от чего они только усиливаются.

При этом, как утверждает квантовая физика, все возможности существуют в один момент, необходимо лишь выбрать нужную. То есть — сместить фокус внимания. Человек как квантовый наблюдатель может кардинально изменить «материю» своей жизни. Помните — «где внимание, там и энергия»! Это основной закон не только с точки зрения физики, но и эзотерики. Это дает ключ к управлению своими состояниями, окружающей реальностью и событиями.

Так, чтобы заставить исчезнуть что-то нежелательное, надо перестать это наблюдать и направлять туда энергию.

Ученым не нравились пять, казалось бы, противоречащих друг другу систем уравнений, описывающих одно и то же. Выступая на конференции по теории струн в Университете Южной Калифорнии в 1995 году, Эдвард Виттен из Института перспективных исследований предположил, что пять разных версий теории струн могут описывать одно и то же с разных точек зрения. Он предложил объединяющую теорию под названием « М-теория », в которой «М» конкретно не определяется, но обычно понимается как «мембрана». Слова «матрица», «хозяин», «мать», «монстр», «тайна» и «магия» также были заявлены.

М-теория объединила все теории струн. Он сделал это, заявив, что струны на самом деле являются одномерными срезами двумерной мембраны, колеблющейся в 11-мерном пространстве-времени. Вибрации объектов более высоких измерений например, в трехмерном вибрирующем шарике или сфере или даже в более возможных измерениях , безусловно, являются частью M-теории, но основная теория бран все еще развивается. Объекты более высокой размерности гораздо сложнее вычислить математически, чем точку в классической физике , одномерную струну в теории струн или двумерные мембраны в M-теории. Статус М-теория не завершена, но математика подхода была исследована очень подробно.

Как наш разум связан со Вселенной и какие возможности открывает квантовая психология?

Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания. Изучение свойств чёрных дыр В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции.

Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры , Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры - энтропией, предсказанной Бекенштейном и Хокингом, - и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена. Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона.

Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Струнная космология Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований , всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии.

В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Модель Бранденберга и Вафы В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведет использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. В этот момент температура достигнет максимума и начнёт уменьшаться.

На интуитивном уровне нетрудно понять причину этого явления. Предположим для простоты следуя Бранденбергеру и Вафе , что все пространственные измерения Вселенной циклические. При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. Поскольку температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и её дальнейшему снижению. В результате Бранденбергер и Вафа пришли к следующей космологической картине: сначала все пространственные измерения в теории струн плотно свернуты до минимальных размеров порядка планковской длины.

Температура и энергия высоки, но не бесконечны: парадоксы начальной точки нулевого размера в теории струн решены. В начальный момент существования Вселенной все пространственные измерения теории струн совершенно равноправны и полностью симметричны: все они свернуты в многомерный комок планковских размеров. Далее, согласно Бранденбергеру и Вафе, Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени три пространственных измерения отбираются для последующего расширения, а остальные сохраняют исходный планковский размер. Затем эти три измерения отождествляются с измерениями в сценарии инфляционной космологии и в процессе эволюции принимают наблюдаемую теперь форму. Модель Венециано и Гасперини После работы Бранденбергера и Вафы физики непрерывно продвигаются вперёд к пониманию струнной космологии. В числе тех, кто идет во главе этих исследований - Габриэле Венециано и его коллега Маурицио Гасперини из Туринского университета.

Эти учёные представили свой вариант струнной космологии, который в ряде мест соприкасается с описанным выше сценарием, но в других местах принципиально отличается от него. Как Бранденбергер и Вафа, для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели, они опирались на существование минимальной длины в теории струн. Однако вместо вывода о том, что в силу этого свойства Вселенная рождается из комка планковских размеров, Гасперини и Венециано предположили, что существовала доисторическая вселенная, возникшая задолго до момента, который называется нулевой точкой, и породившая этот космический «эмбрион» планковских размеров. Исходное состояние Вселенной в таком сценарии и в модели Большого взрыва очень сильно различаются. Согласно Гасперини и Венециано, Вселенная не являлась раскаленным и плотно скрученным клубком измерений, а была холодной и имела бесконечную протяженность. Затем, как следует из уравнений теории струн, во Вселенную вторглась нестабильность, и все её точки стали, как и в эпоху инфляции по Гуту, стремительно разбегаться в стороны.

Гасперини и Венециано показали, что из-за этого пространство становилось всё более искривлённым и в результате произошел резкий скачок температуры и плотности энергии. Прошло немного времени, и трёхмерная область миллиметровых размеров внутри этих бескрайних просторов преобразилась в раскалённое и плотное пятно, тождественное пятну, которое образуется при инфляционном расширении по Гуту. Затем все пошло по стандартному сценарию космологии Большого взрыва, и расширяющееся пятно превратилось в наблюдаемую Вселенную. Поскольку в эпоху до Большого взрыва происходило своё инфляционное расширение, решение парадокса горизонта, предложенное Гутом, оказывается автоматически встроенным в этот космологический сценарий. По выражению Венециано в интервью 1998 г. Изучение струнной космологии быстро становится областью активных и продуктивных исследований.

Например, сценарий эволюции до Большого взрыва уже не раз был поводом горячих споров, а его место в будущей космологической формулировке далеко не очевидно. Однако нет сомнений, что эта космологическая формулировка будет твёрдо опираться на понимание физиками результатов, открытых во время второй суперструнной революции. Например, до сих пор не ясны космологические следствия существования многомерных мембран. Иными словами, как изменитcя представление о первых моментах существования Вселенной в результате анализа законченной М-теории? Этот вопрос интенсивно исследуется.

Во-первых, он должен будет составить карту неба в ультрафиолетовом диапазоне. Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений.

Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности. Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов. Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов.

Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой. Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных.

Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем.

Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы. Источник изображения: ИИ-генерация Кандинский 3. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую. Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им.

Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере. Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли. Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters.

Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко. Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина. Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода. Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске.

Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным. Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример , как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно. Приливное разрушение звезды чёрной дырой в представлении художника.

Kornmesser Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру. Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта.

Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации.

Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон.

К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией.

Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т.

Открытая Вселенная: В этой модели Вселенная расширяется вечно, и пространство беспредельно. Здесь нет определённых границ, и Вселенная действительно бесконечна.

Плоская Вселенная: В этой модели Вселенная имеет плоскую геометрию, а её размеры могут быть ограниченными, но опять-таки без определённых границ. В целом, сегодня «границу» наблюдаемой Вселенной можно установить на отметке в 13,8 миллиарда световых лет. Впрочем, это не значит, что Вселенная на этом обрывается. Просто-напросто дальше мы пока заглянуть не способны. Панорама нашей галактики Млечный Путь и соседних галактик от Gaia. Карты показывают общую яркость и цвет звёзд вверху , общую плотность звёзд посередине и межзвёздную пыль, заполняющую Галактику внизу. Время, за которое фотоны от этой сферы успевают до нас долететь, равны возрасту Вселенной. Из-за этого мы и не способны увидеть объекты, находящиеся дальше этой сферы, даже если они и существуют. Даже при использовании скорости света как предельной космической , существует фундаментальный предел, насколько далеко мы можем заглянуть назад во времени.

Однако это позволит лишь приблизиться к краю Вселенной. Однако есть загвоздка в том, чтобы физически оказаться на границе Вселенной, а не только её увидеть. И снова всё упирается в расширение Вселенной и невероятно огромные расстояния.

Теории происхождения Вселенной и ее модели

Темная материя существует и для этого есть множество доказательств, однако что именно она собой представляет, остается тайной. Температура Темной материи Ученые пытаются понять не только что такое Темная материя — им интересно, насколько она может быть холодной или горячей. Разные теории предполагают, что темная материя может быть горячей, теплой или холодной, однако общепринятой считается модель «Лямбда-СиДиЭм», согласно которой эта субстанция является холодной и темной. Темная энергия Темной энергией в 1990-е годы группа астрофизиков назвала субстанцию, которая, по их мнению, противодействует гравитации и ускоряет расширение Вселенной. Согласно некоторым теориям, темная энергия представляет собой область, известную как «квинтэссенция» — понятие переменного во времени и пространстве скалярного поля, предложенное Эйнштейном. Немезида — наше второе солнце Некоторые тайны космического пространства человеческому мозгу воспринять очень сложно, если вообще возможно. Так, многие ученые считают, что когда-то у нас было два солнца, одно из которых носило имя Немезиды. Что удивительно, последние исследования это подтверждают, поскольку в результате детального изучения звезд Млечного пути ученые пришли к выводу, что все солнцеподобные звезды рождаются в парах. Тем не менее, до тех пор пока не будет найдена звезда, идентичная по составу нашему солнцу, Немезида останется одной из самых таинственных загадок вселенной.

Луна На самом деле никто не знает, откуда появилась Луна.

И имеем для этого научное обоснование. То есть, если мы представляем какое-либо желаемое будущее событие, эта реальность уже существует как потенциальная возможность. Она находится в бесконечном квантовом поле, где нет понятий пространства и времени. А все, что нужно для ее появления — это внимание наблюдателя. Вот из такого пространства вариантов мы и выбираем свою собственную реальность и те события, из которых состоит наша жизнь.

Человеку свойственно зацикливаться на своих проблемах, фокусируя на них внимание, от чего они только усиливаются. При этом, как утверждает квантовая физика, все возможности существуют в один момент, необходимо лишь выбрать нужную. То есть — сместить фокус внимания. Человек как квантовый наблюдатель может кардинально изменить «материю» своей жизни. Помните — «где внимание, там и энергия»! Это основной закон не только с точки зрения физики, но и эзотерики.

Это дает ключ к управлению своими состояниями, окружающей реальностью и событиями. Так, чтобы заставить исчезнуть что-то нежелательное, надо перестать это наблюдать и направлять туда энергию. Направляйте свое внимание на планы и возможности, и энергия отправится туда, материализуя эти возможности. Управляя своим вниманием, вы управляете своей жизнью!

Использование информации предоставленной Клиентом и получаемой Продавцом. Продавец вправе направлять Клиенту сообщения рекламно-информационного характера.

Если Клиент не желает получать сообщения рекламно-информационного характера от Продавца, он должен изменить соответствующие настройки подписки в соответствующем разделе Личного кабинета. С момента изменения указанных настроек получение рассылок Продавца возможно в течение 3 дней, что обусловлено особенностями работы и взаимодействия информационных систем, а так же условиями договоров с контрагентами, осуществляющими в интересах Продавца рассылки сообщений рекламно-информационного характера. Отказ Клиента от получения сервисных сообщений невозможен по техническим причинам. Предоставление и передача информации, полученной Продавцом: Продавец обязуется не передавать полученную от Клиента информацию третьим лицам.

Тем не менее, до тех пор пока не будет найдена звезда, идентичная по составу нашему солнцу, Немезида останется одной из самых таинственных загадок вселенной. Луна На самом деле никто не знает, откуда появилась Луна. Несмотря на многочисленные исследования, ответ на этот вопрос до сих пор найден и все остается на уровне теорий и предположений.

Некоторые популярные теории допускают, что Луна появилась в результате гигантского столкновения Земли с «протопланетой», произошедшего около 4,5 миллиардов лет назад. Другая популярная теория предполагает, что Луна на самом деле является астероидом, застрявшим в нашей гравитации. Шумы космоса Звучание Вселенной для человеческого уха недоступно, поскольку в условиях космоса молекулы вещества не сталкиваются друг с другом и не создают вибрацию, привычную для нашей барабанной перепонки. Тем не менее, звук космоса существует и может быть определен при помощи радиосигналов, однако откуда он поступает и что его вызывает, ученые объяснить не могут. Космические лучи Космические лучи представляют собой частицы высокой энергии, движущиеся в космическом пространстве. Интенсивность космических лучей заметно и существенно повышается.

Об устройстве Вселенной – простыми словами. Поймет даже ребенок

Речь о том, что, согласно общей теории относительности, вселенная включает в себя 4 измерения: длину, ширину, глубину и время. В 1983 году физики Стивен Хокинг и Джеймс Хартл выпустили научную работу, посвященную новой теории возникновения Вселенной. гравитационные волны и их практическое применение.

Навигация по записям

  • Читайте также
  • М-теория – модель Вселенной
  • Что такое энтропия Вселенной?
  • Стивен Хокинг надеялся, что M-теория объяснит Вселенную. Что это за теория?
  • 2. Черные дыры
  • 6 секретов Вселенной, которые вас удивят

Похожие новости:

Оцените статью
Добавить комментарий